Contents

A Pilot Geophysical Evaluation of the Site of Tilaurakot, Nepal
Schmidt, A., Coningham, R.A.E., Strickland, K.M., & Davis, C.E. 1-16

A Pilot Geophysical Evaluation of the Site of Ramagrama, Nepal
Schmidt, A., Coningham, R.A.E., Strickland, K.M. & Shoebridge, J. E. 17-33

Nepali Section

नेपाल स्थित भूटानी गुल्मा, मानी-ल्हा-खाड संरक्षण र संचालन: एक ऐतिहासिक विवाद
बुशाला मान्नाहर (फिजार) .. 34-42

पुरातत्व विभाजनको मतिविधि आ.व. ५६८/६७
स्थायावुप्चर राजकोषी, सविता न्यौले .. 44-50
A Pilot Geophysical Evaluation of the Site of Tilaurakot, Nepal

Schmidt, A., Coningham, R.A.E., Strickland, K.M., & Davis, C.E.

Abstract

In July and August 1997, and again in July and August 1999, a team of archaeologists and archaeological scientists from the UK were invited to carry out a pilot geophysical evaluation of the site of Tilaurakot in collaboration with a team from the Lumbini Development Trust and the Department of Archaeology, Government of Nepal. The site was selected for study on account of its strong textual and archaeological links with Lumbini and funded by UNESCO’s World Heritage Centre in order to support the preparation of a nomination for the site as part of a serial nomination of World Heritage Sites associated with the life of the Lord Buddha. The evaluation successfully identified a number of probable archaeological features within the city site for future investigation.

1. Introduction

The site of Tilaurakot is located three kilometres north of the town of Taulihawa on the eastern bank of the river Banganga and the site consists of a fortified ‘citadel’ of approximately 500 metres by 400 metres and is surrounded by a series of associated monuments. Tilaurakot was first noted as a place of archaeological interest during the 1896 tour of Dr A. Fuhrer, Archaeological Surveyor for the North-Western Provinces of Oudh, during which he stated that there were a number of important Buddhist remains in its vicinity (Fuhrer 1897: 22). In 1899 the ruins at Tilaurakot were investigated, surveyed and excavated by P.C. Mukherji, also of the Archaeological survey of India (Mukheji 1901) and he recognized the wooded mound as the site of a rectangular fort protected by a wall and ditch, the latter being double on the south-eastern edges of the fort. He cut sections through the fortification wall finding it to be twelve feet wide and cleared the eastern gateway, exposing a number of guardrooms (ibid.: 19). He also noted the provision of a large tank within the north-eastern corner of the site and a smaller one to its south-east. During these clearings he exposed a number of cardinaly-oriented brick-built structures close to the surface within the interior of the fort. As a result, he identified a palace in the vicinity of a modern shrine to a local deity, Samai Mayi, and exposed a large number of its brick walls, some superimposed upon earlier foundations (ibid.: 20). A further structure was exposed some twenty-five feet west of these structures, consisting of brick walls and a lime concrete flooring. A further floor of this material was revealed in a trench to the north-west of the shrine. More structures were noted to the east of the shrine, a square building and an octagonal structure, the latter was identified as a stupa by Mukherji (ibid.). Two more stupas, one of which was sixteen-sided, were excavated in another mound in the north-east of the site. He also investigated a number of the mounds in the immediate vicinity of the large tank and exposed a series of brick structures on its northern, western and southern sides. He also excavated a large mound to the south-west of the temple and exposed a further structure which he referred to as a building of ‘respectable dimensions’ (ibid.: 21).

In addition to investigating the remains of the fortified citadel, Mukherji also studied the immediate vicinity of the mound and recorded a number of associated structures. The largest of these was a large mound in the paddy fields, some 220 metres south-east of the exposed eastern gate (ibid.: 21). A section had been already cut into the mound at the request of Major Waddell but Mukherji had this work contained in order to expose the full dimensions of the monument, which he confirmed as a brick-built stupa. Its section suggested that the monument had
undergone a series of remodelling and its final phase measured sixty-eight feet in diameter with an extent height of six feet (ibid.: 22). Mukherji noted that it had been opened on the north side in antiquity, thus any attempt to date its construction from the relic chamber was quite impossible, as all relics had been removed. Two large, silted tanks to the south-east of this stupa were also recorded. A large mound of iron slag was noted on the edge of the southern ditch of the site, which Mukherji interpreted as suggesting that "there was a large workshop here in ancient times" (ibid.). On the western side of the 'citadel', close to gate no. 2, he recorded the remains of a vihara, as indicated by two low mounds and a large brick foundation. In the north of the site, he identified further archaeological features - a suburb of the fortified 'citadel' in the triangular plot of jungle just beyond the northern ditch, stating that this area "no doubt, formed an inhabited part of the ancient town" (ibid.). He also suggested that this suburb had also been provided with a fortification in the form of a ditch (ibid.). A further monument to the site's south was noted on the northern outskirts of the town of Tauliva (ibid.: 119). The monument consisted of a large brick mound, undoubtedly a stupa, on the western side of the road, surmounted by a small shrine to Sama Mayi. Mukherji stated of this site that "I doubt not that if excavations are judiciously undertaken here, some very interesting finds may be discovered" (ibid.).

Mukherji was convinced that the remains at the site of Tilaurakot represented Kapilavastu, the capital of king Suddhodhana, stating that "closer inspection showed me that Tilaura-kot (sic) was most likely the city of the Buddha's father." (ibid.: 3-4). He explains for this confidence were provided by a series of similarities between textual descriptions of ancient Kapilavastu, Asokan inscriptions and his topographical and archaeological records of the site. Mukherji's first task was to demonstrate that the two sites were topographically identical. He noted that the Chinese pilgrim Hiuen Tsang had recorded that Kapilavastu, the birthplace of the Gautama Buddha, was located fifty li north of the natal town and nirvana stupa of one of his predecessors, the Krakuchchhanda or Kakutsanda Buddha (ibid.: 55). Hiuen Tsang also recorded that a pillar had been erected by the Emperor Asoka next to the stupa. Having changed the fifty li to a distance of four miles, Mukherji demonstrated that the broken pillar and stupa at the village of Gotihawa were at the requisite distance to the south of Tilaurakot (ibid.: 55). He then demonstrated that the pilgrim's description of the natal town, Asokan pillar and nirvana stupa of the Konagamana or Kanakamuni Buddha, some thirty li or four miles to the north-east of that of Krakuchchhanda Buddha, agreed with the location of the Asokan pillar at Nigalihawa (ibid.: 56). Similarly, he suggested that as the pillar had stated that Kapilavastu was located fifty li west of Lumbini, the location of Tilaurakot in relation to the newly discovered pillar at the site of Runmin-dei demonstrated further agreement (ibid.: 49).

Having demonstrated that geographically the identification was viable, Mukherji then provided a further list of more detailed parallels at the site itself. Kapilavastu was recorded as having been located beside a lake and to the east of a river, a position which Mukherji could show was also shared by Tilaurakot. Mukherji went on to identify a number of the extant monuments with those of Kapilavastu as described by Hiuen Tsang, thus the surface remains near the modern temple were interpreted as the vihara built on the palace, the octagonal remains as the Vihara of the conception, the sixteen-sided stupa as the Asita stupa (ibid.: 51), the remains on the north-west of the central tank as Yasodhara's quarters (ibid.: 52), the remains on the north-east of the central tank as the school house, the foundations of a large building outside the eastern gate as a Sangharama, a mound 166 metres south of the south gate as the elephant-throwing stupa (ibid.), mounds on the northern and western sides representing stupas belonging to two of the viharas of the four signs (ibid.: 53). He further stated that the large stupa on the eastern side of the site "struck me as having some meaning, presumably associated with the life of the Buddha" (ibid.: 22). On the basis of this evidence he supported his identification suggesting that "It will thus be seen that no other ancient site has so much claim on the identification of Kapilavastu as Tilaura (sic), as being situated in the right position and fulfilling all other conditions" (ibid.: 50).

Of course these identifications were not without their problems or their critics. One core problem was that both Faxian and Hiuen Tsang allocate different distances and directions for their routes from Sravasti to Kapilavastu. These identifications were not without their problems, including an apparent contradiction between the
locations of Kapilavastu as recorded by Faxian and Huien Tsang. The problem was, however, lessened by Vincent Smith who suggested that the two pilgrims were referring to different sites as Kapilavastu (Smith 1901: 10), one possible solution to the contradiction. Furthermore he stressed that such identifications aimed only at ascertaining the position of the site named Kapilavastu visited by the two Chinese pilgrims stating that 'the inquirer should remember that an interval of at least nine hundred years intervened between the death of Gautama Buddha and the visit of Fa Hian. The more detailed account of Huien Tsang dates from a period about two hundred and thirty years later.' (ibid.: 12).

The debate on the site's identification as the ancient city of Kapilavastu has continued since Mukherji and Smith's time leading to a series of publications, some supporting an identification with Tilaurakot and some an identification with the monastic complexes at Piprahwa and Ganwaria; as it was not aim of this fieldwork to investigate or evaluate such debates we shall only repeat Hartel's words that 'The majority of scholars all over the world tended to Tilaurakot' (Hartel 1995:151).

Since Mukherji's explorations the site was not investigated again until 1962 when joint excavations were conducted at the site by the Department of Archaeology, Government of Nepal and the Archaeological Survey of India, under the direction of Debala Mitra (Mitra 1972). Unfortunately during this single season only 'a small trench across the fortifications' was excavated. This trench, TLK-1, was located in the north-west corner of the walled area and measured thirty-two metres by six metres (ibid.: 11). The maximum height of the deposits from natural soil to the highest point of the brick fortification was 3.9 metres and the habitation deposit only 1.5 metres high (ibid.: 14). Mitra divided this sequence into three main phases, IA & B, pre-fortification; II, mud-rampart; and III, brick fortification (ibid.). Any attempted re-analysis of the ceramics and their distribution within this sequence using Mitra's ceramic report is almost impossible as she divided the ceramics into only two categories, sherd from Period I, and later sherd from the two surface layers (ibid.: 16). This was done because she suggested that the presence of phase I sherd in rampart construction phases II and III, was purely due to their later mixing. Northern black polished ware was recovered from phases IA and B, and presumably phases II & III, of the sequence (ibid.: 18). Normally one would ascribe this ceramic, and its deposits, a date of between the sixth century and the second century BC (Erdosy 1994: 105). However, Mitra ascribes a much later date stating that 'in the present context it is certainly not earlier than the third century BC and is most probably not later than the second century BC' (Mitra 1972: 18). Mitra suggested this later date because of the presence of a single inscribed sherd - a single example that might have been of an intrusive nature. A further ceramic category recovered from phase I was classified as a 'grey ware' by Mitra (ibid.: 23). Mainly in the form of a 'thali,' a number of examples had black painted bands, dots and strokes, causing Mitra to state that 'These indifferently-painted sherds found in association with the Northern Black Polished Ware cannot be assigned to a distinctly pre-NBP Ware phase, but the possibility of finding classic examples of Painted Grey Ware or of isolating its pre-NBP Ware phase elsewhere, if not on the site, cannot be entirely ruled out' (ibid.). The contemporaneous nature of these two categories of ceramics cannot be established at the site as no tables were published giving their distribution within the excavated layers. It is quite possible that the latter sherds represent a localized form of Painted Grey Ware, which can be ascribed a date of between the ninth and seventh century BC (Erdosy 1994: 80) and that their presence is derived from earlier deposits. Mitra summarized her findings suggesting that the presence of northern black polished ware at the site suggested that it might have been occupied as early as the sixth century BC, but not in the area of the trench, that there was no occupation in the Post-Common era, and that the structures exposed on the surface by Mukherji were likely to be Mediaeval in date (ibid.: 15).

Unfortunately, due to the location of Mitra's trench in mixed deposits on the city wall, a factor combined with the diminutive size of the trench, it was impossible to deliver a sound scientific summary of the sequence and chronology of Tilaurakot. Further work was therefore carried out by the Department of Archaeology, Government of Nepal between 1967 and 1972 during which a number of sondages were opened within the mound (Mishra 1978). The excavations concentrated on either clearing monuments close to the surface or on creating a stratigraphic sequence for the site. A 6.5 metre square trench was opened in front of the Samai-Mayi shrine
on mound I, exposing part of a mediaeval Vishnavite temple (ibid.: 8), whilst a trench on the western edge of the mound yielded the remains of a gateway complex in 1967, similar in form to that of the eastern gateway (ibid.: 10-11). This latter excavation also exposed the course of a road running through the gate and into the interior of the site (ibid.: 12). The sondages produced a sequence of nine occupation periods which were dated between 200 AD and 700 BC; 1 & 2, Kushan; 3 & 4 Sunga; and 5, 6, 7, 8 & 9 NBP and Painted Grey ware (ibid.: 9). A Japanese team from the University of Rissho helped excavate a surface structure, interpreted by some scholars as a palace on mound V11 (Rijal 1979: 33). Unfortunately the excavation report was never published. In 1979 Rijal published the section from a sondage in mound V and produced a new sequence that stretched from the first millennium BC to the third century AD. This sequence was divided into period I. c. 800 - 1100 BC (with painted grey ware); period II. c. 600 - 900 BC (with northern black polished ware); period III, Mauryan (with northern black polished ware and Brahmi inscriptions); period IV. Sunga; and period V, Kushan (ibid.: 34-5). During this later phase of investigations, research was not limited to the interior of the site, and when bricks and a punchmarked coin were found at Dhammahawa, some 400 metres to the north of Tilaurakot, this area was investigated. The 1968 excavations yielded a complex of two brick built stupas, the larger had a diameter of 17.5m and a height of 2.5 metres whilst the smaller had a diameter of 8.5m (Misra 1978: 134). The former was found to have altered in a series of four construction phases, whilst the latter had only one (ibid.).

2. Methodology

Archaeological geophysics, a non-destructive technique, is now an integral part of non-destructive site assessment in the UK, and has been successfully used in South Asia (Coningham & Schmidt 1997; Schmidt & Coningham 2010). It can record shallow sub-surface features quickly and requires only a small team, making it both time and cost-effective. Within the UK, it is generally used in two ways; firstly, to assist with site management and, secondly, to investigate and assess newly discovered sites. The former involves the large scale survey of the monuments in order to define their extent below the surface. Often the distribution of standing monuments may be very different to that of foundations and other remains which are sub-surface. When such a survey is conducted, it is possible to map the position of unexcavated structures in order to gauge the importance of the various areas of the site. This information should be stored, preferably on a GIS system, and when any site development plans are proposed, such as the construction of paths, drains, pipelines or museums, these areas can be avoided. Similarly, if the relationship between sub-surface monuments is questionable, it is possible to locate suitable areas for research-oriented excavations and evaluations. The geophysical element in site assessment is also designed at allowing archaeologists and conservators to identify the best areas to work.

The objectives of this pilot evaluation were to identify any remains in a sample of survey areas that are related to earlier structures present at Tilaurakot. Earth resistance and fluxgate gradiometer surveys were carried out on both sites. The choice of these methods was based on the prevalent use of burnt bricks as building material in Historic and Early Historic times, as evident from earlier surveys in the Terai. Structural brick remains, such as foundations, usually produce distinct magnetic signals and often also form a barrier to electrical current flow, showing as high earth resistance.

The survey was undertaken, using a Geoscan Research FM36 fluxgate gradiometer and a Geoscan Research RM15 earth resistance meter and frame PA5n, along lines parallel to the grid edges, walking west to east and starting in the north-west corner of each grid. The grids were arranged in 10m X 10m blocks, with data recorded every 0.5m along the lines which were 0.5m apart (10m X 10m @0.5m X 0.5m). A twin-probe configuration was used for the earth resistance survey (separation of mobile electrode was 0.5m of remote electrodes approximately 3m). A current of 1mA and a gain of 10 were used. The fluxgate gradiometer was set to a recording of 0.1nT.

Earth resistance data were recorded automatically upon insertion of the electrodes in the ground (medium logging speed). Subsequent lines were surveyed in alternate directions (zigzag). Fluxgate gradiometer data were recorded walking with manual or automatic trigger. All lines were walked in the same direction (parallel). After completion of each grid, the drift of the equipment was logged at a common reference position and the electronic and mechanical set up of the instrument.
adjusted. Data were downloaded using Geoplots and these data and metadata are used for archiving. Subsequently, grids were matched to each other using the automatic functions of Contours or Zero Median Grid in the Grid software.

3. Results

3.1 Results of the 1997 Mission During the 1997 mission to Tilaurakot we conducted four geophysical surveys, one between the central ‘palace’ structure and the eastern gate (Site 1), one in the eastern half of the northern suburb (Site 2), one in a field to the south of the silted ditch (Site 3) and one to the immediate south of the eastern stupa (Site 4). In addition to the geophysical surveys we also conducted an EDM survey in order to link our grids into plans of the site. Site 1 was a rectangle measuring 100 metres by 40 metres and was laid between the conserved central ‘palace’ remains excavated by Rissho University and the Department of Archaeology and the conserved eastern gate. In locating the geophysical survey in this area we hoped to identify the ancient course of the road within the fortified area running from the eastern gate. There was also the possibility that this road went in a south-western direction and connected with the conserved western gate. The area was free of trees but was covered in a tall grass which had to be removed before the survey grids could be laid out. The grids were then subjected to an earth resistance and fluxgate gradiometer survey. The major feature visible in the magnetometer results is a linear strip (a) running from the south-west to the north-east. It is marked by two narrow positive anomalies running to its north and south, respectively. This same feature is also characterized by a slightly reduced resistance. From the shape and width of the feature its interpretation as a major road of the citadel is most likely.

Another linear positive magnetic anomaly (b) runs parallel to this feature, and anomaly (c) runs perpendicular to (b). These two features have no correspondence to anomalies in the resistance survey and are possibly caused by structural remains, for example, wall foundations. A differently aligned high resistance anomaly (d) cuts across these features and seems unrelated to them and no interpretation can be offered. Low resistance anomaly (e) is the modern path which transverses the area. It is clear that the feature (a) runs directly from the eastern gate and passes between the southern edge of the conserved ‘palace’ and the central tank towards a slight depression in the western rampart - perhaps the indicator of an eroded gate. The road is approximately 10m wide and runs east-west across the site and parallel features (b) and (c) suggest that it may be part of a formal system of cardinal divisions dividing the site into blocks. As previously stated, such a pattern is well known from the Early Historic cities of Sirkap in Pakistan, Bhita and Siupalgarh in India and correlates well to urban layouts provided by the Arthasastra. However, it is worth stressing that the results of the geophysical survey have only identified features dating to the final occupation of the site, phase V - the Kushan period.

Site 2, measuring 40 metres by 100 metres, was located in fields just beyond the northern rampart and ditch, an area of land which Mukherji had assumed was part of the urban complex (Mukherji 1901: 22). The area was covered in a thin grass and the only visible features were field bunds, however, there were substantial scatters of eroded fragments of pottery. The site was subjected to both an earth resistance and fluxgate gradiometer survey. No obvious features were interpreted apart from the field bunds which are clear on both surveys. In addition to the two geophysical surveys we conducted a surface survey with the EDM which identified a possible gate in the south-west corner of the area. Although the results of the geophysical survey were poor, the presence of substantial pottery scatters and a possible gateway are evidence of the fact that this area is clearly part of the ancient urban complex.

Site 3 measured 40 metres by 30 metres and was located in uncultivated fields some 100 metres to the south of the city’s south-west corner. The only visible features within the grid were field bunds and it was covered in short grass. It was subject to both an earth resistance and fluxgate gradiometer survey. Again the results of the geophysical survey were poor and the only possible identifiable features were the field bunds. Although the geophysical survey failed to identify possible structures within the grid, we also conducted an EDM survey of the surrounding area. The city’s silted defensive moat is particularly well preserved on the southern sector and at the time of the mission still held water. We also recorded a 100 metre long scatter of pottery fragments eroding out of a small band some 75 metres north of Site 3, close to the modern Vihara. A low mound on the
immediate southern bank of the silted moat, some 160 metres to the north-east of Site 3 was surveyed. This mound, first noted by Mukherji (1901: 22) consisted of a large scatter of iron slag several metres high. The date of this archaeological feature is unclear but it may well be an indicator that certain industrial practices were located outside the urban centre to avoid undue pollution. It should also be noted that substantial quantities of slag were encountered during the excavation of the site's western gate. The excavator recorded that the surface of the road running through the gate into the interior of the city was metallled with slag (Misra 1978: 12).

Site D, measuring 40 metres by 40 metres, was located in an uncultivated field to the south of the eastern stupa. The only visible features within the grid were field bunds and it was covered in short grass. It was subject to both an earth resistance and fluxgate gradiometer survey. As with Sites B and C the results of the geophysical survey were poor. The team noted that the stupa itself was very badly overgrown.

3.2 Results of the 1999 Mission Site A, surveyed in 1997 at 1m resolution, lies in an open space between the fenced “palace” compound and the Eastern gate and Site 1, surveyed in 1999 at 0.5m resolution, lies immediately to its North. Two parallel linear high magnetic anomalies are running through the Southern part of Site A and are also vaguely indicated in the earth resistance data. It is most likely that they are the borders of a consolidated road surface. There are further linear anomalies in parallel and at right angles to this feature and it can be assumed that they are part of a rectangular street layout. As can be seen from the overview diagrams, the feature is heading directly towards the Eastern gate. No anomalies were found that could easily be interpreted as the remains of individual buildings. To the NE of Site A and to the North of Site 1 accumulations of localised high magnetic anomalies with pronounced negative ‘halos’ are visible. They are most likely caused by the random dumping of ferrous material and are similar to the response of slag heaps found on other sites. The anomalies could either be due to the destruction of the site or due to modern dumping. The current paths across the site show as anomalies of low earth resistance. Additional bands of low earth resistance are visible but probably due to the current topographical variations.

Site B lies to the north of the main citadel site, within modern paddy fields that were dry at the time of survey. The earth resistance data show bands of low values, which seem to intersect at right angles. It is possible that these anomalies are part of some regular underlying structures but the results are not sufficiently clear to confirm this. Magnetometer data are governed by an apparently random assemblage of individual high magnetic anomalies. Since they show only limited negative ‘halos’ it is likely that they are caused by modern surface fires. No structural anomalies could be identified.

Site C lies to the south-west of the citadel, East of the modern Buddhist complex in the middle of some paddy fields. The latter were reasonably dry at the time of survey although the survey was disrupted by heavy rain. Broad banding is visible in the earth resistance data and it is possible that this is related to the irrigation of paddy fields. Magnetometer results show localised high magnetic anomalies, very similar to Site B, which do not appear to form any particular pattern and are probably caused by modern surface fires. The vague indication of a linear negative magnetic anomaly running north to south in the eastern half of the area, undercutting one of the current bunds. Further interpretation of this anomaly is not possible.

Site D lies to the south of the Eastern Stupa, outside the citadel. The area was very dry and the soil hard, leading to a large number of unrecorded earth resistance positions. The remaining area shows a broad band of low earth resistance but its interpretation is inconclusive. Magnetometer surveys on the same site show a number of isolated high magnetic anomalies. Some of these are clearly bi-polar, especially two adjacent to each other in the western half of this site. They show negative anomalies slightly bigger than their positive part, indicating a horizontal orientation of the causative magnetisation. It can therefore be assumed that they are produced by horizontal ferrous objects. The other anomalies could either be due to ferrous waste or surface fires (see Site B). Their interpretation is otherwise inconclusive.

Site 2 lies to the north of the current entrance to the site and shows a deep depression running east to west, leading to an earlier entrance to the site. This depression is marked by high earth resistance readings and some missing data points. To the North and South of the depression, areas of low earth
resistance values are found, which lead to areas of higher earth resistance to the north-east. The data do not reveal any structural features. The range of magnetometer data is fairly high indicating a scatter of magnetic anomalies of probable ferrous origin. There is no clear pattern to their arrangement and a random dumping of material is the likely cause.

Site 3 lies immediately east of the fence enclosing the preserved Western gate and Site 7 extends north of it (only earth resistance surveys were undertaken on Site 7). This area shows several broad bands of low earth resistance which are vaguely parallel to each other. The south-western band is intersected by a linear high resistance anomaly of about 5m width that is bending northwards at the northern end of Site 3 to flank the low earth resistance anomaly of Site 7 on its western side. The origins of this anomaly are unclear. However, a blurred and broad high earth resistance anomaly seems to run in parallel with it on Site 7 and possibly on Site 3 in a distance of about 15m. It is therefore possible that they are flanking a strongly curved road leading to the Western gate. While such curving road may seem unlikely for a regularly laid out street plan, it could possibly join the road-like feature found on Site A and Site 1. However, this interpretation is very tentative and requires further data for its support. The magnetic anomalies on Site 3 are localised and many show only limited associated negative 'halos'. It is therefore likely that they are caused by modern surface fires.

The most interesting findings on Site 7 are a number of rectangular high earth resistance anomalies to its north. The northernmost anomaly is relatively weak and aligned north to south but seems to be subdivided horizontally, forming an H-shaped structure, probably related to a building. To its south lies a rectangular area of consistently high earth resistance. This is possibly caused by a solid floor (possibly brick) or a collapsed building, densely filled with rubble. To its East lies a more complex structure with two adjacent cells aligned east to west and an additional elongated cell to its north. It is likely that this is part of an underlying building. Further smaller rectangular anomalies are aligned with these structures and some linear features are running diagonally north-west to south-west to the north of the complex structure. Further rectilinear high earth resistance anomalies are found to the West of Site 7 but they do not appear to form individual structures although they could be caused by boundary walls.

Site 9 lies to the south of the fenced "palace" compound and is partially overlapping Site A. Only earth resistance surveys were undertaken on this site. There are no small-scale features apparent in the data but the low earth resistance data to its East seem to show relatively abrupt rectilinear edges. It is therefore possible that this area is associated with underlying features. However, it is notable that the linear feature from Site A ('road') is not apparent in this overlapping site. The reasons for this are unclear. It has to be noted, though, that the data show broad bands of low and high resistance to the West which are vaguely aligned with the linear feature of Site A. The data remain inconclusive.

4. Conclusion

These two pilot geophysical evaluations identified a number of specific anomalies, which are most likely caused by structural remains from the latest phase of the citadel's occupation. On Site A, a road-like feature is extending westwards from the Eastern Gate with adjoining rectilinear anomalies, possibly related to a regular street pattern. It was not possible to detect this pattern on other parts of the site, partly because only earth resistance surveys were employed on Site 9. To the east of the Western gate, broad bands of anomalies are sweeping through Site 3 and their interpretation as the delineation of a curved road is very tentative. On Site 7, a number of rectilinear high earth resistance anomalies were discovered that are most likely caused by building remains, which could be similar to those found in the "palace" compound. On most sites, a random distribution of high magnetic anomalies was found probably related to modern surface fires or ferrous waste material. It is also recommended that additional surveys are undertaken on the site to assess whether any further substantial structures are present underground. In conclusion, we may state that the archaeological site of Tilaurakot is highly significant as it is one of the best preserved examples of a provincial Early Historic South Asian city and its immediate environs and warrants further archaeological investigation.

5. Acknowledgements

In addition to the generous help given by the officers of the Department of Archaeology,
and the Ministry of Culture, Tourism and Civil Aviation, Government of Nepal, and the Lumbini Development Trust during our missions, we would also like to acknowledge the assistance of the following individuals: Mr Shrikrishna Gautam, Mr Khadga Man Shrestha, Dr Armatyia, Mrs Riddhi Pradhan, Mr Kosh Prasad Acharya, Mr C.P. Tripathi and Mr. Sukra Sagar Shrestha; Mrs Rana, Mr Laxmi, D. Manandhar, Mr Ram Lal Shrestha, Mr Gajendra Kumar Lama, Ang Dawa Sherpa, Mr Basanta Bidari and Mr Pratap Khatri of the Lumbini Development Trust; Mr Purushottam N. Pradhan of the Nepal National Commission for UNESCO; Ms Minja Yang, Junko Taniguchi, Mr Yoshinobu Kitamura, Hisamichi Gurung and Mr David Michelmore of UNESCO; and Professor Carl Heron of the Department of Archaeological Sciences at the University of Bradford; Professor Mark Pollard of the School of Archaeology at Oxford University, and Dr. Mark Manual of the Department of Archaeology at Durham University. We would also like to thank Mr Steve Cheshire and Mr Damian Robinson for creating the plans and maps of the various sites. Finally, we must acknowledge the financial support of UNESCO, without which this monitoring mission would not have been possible.

6. References

Beal, S., 1869. Travels of Fah-Hian and Sung-Yun: Buddhist pilgrims from China to India (400 AD and 518 AD). London: Trubner & Co.

Fuhrer, A. 1897. Antiquities of the Buddha Sakyamuni’s birth-place in the Nepalese Terai, Archaeological Survey of India Volume VI. Simla; Archaeological Survey of India.

Mukherji, P.C., 1901. A report on a tour of exploration of the antiquities in the Terai, Nepal, the region of Kapilavastu, during February and March 1899. Archaeological Survey of India Volume XXVI. Simla; Archaeological Survey of India.

Rijal, B.K., 1979. Archaeological remains of Kapilavastu, Lumbini and Devadaha. Kathmandu; Education enterprises (PVT) Ltd.

Figure 1: Plan of archaeological remains in Kapilavastu (after Rijal 1996)

Figure 2:
Figure 12:

Figure 13:
A Pilot Geophysical Evaluation of the Site of Ramagrama, Nepal

Schmidt, A., Coningham, R.A.E., Strickland, K.M. & Shoebridge, J. E.

Abstract

During two separate missions in 1997 and 1999, a team of UK archaeologists and archaeological scientists were invited to carry out pilot geophysical evaluation at Ramagrama, the only unopened stupa of the eight which had originally contain the Buddha's mortal remains. This project was conducted in collaboration with a team from the Lumbini Development Trust and the Department of Archaeology, Government of Nepal. The site was selected for study on account of its strong textual and archaeological links with Lumbini and funded by UNESCO’s World Heritage Centre in order to support the preparation of a nomination for the site as part of a serial nomination of World Heritage Sites associated with the life of the Lord Buddha. In the course of these two missions, archaeological remains were identified at several sites in Ramagrama and the immediate environs for future investigation.

1. Introduction

The site of Ramagrama is located 4km south of the town of Parasi, which is itself some 8km south-east of the town of Somnath. The visible remains at the site consist of a very large brick stupa, measuring some 23.5m in diameter and 10m in height and a length of brick walling exposed in the southern bank of the old course of the river Jharahih. It was discovered in the 1890s and one of the earliest references to the site reported that Dr Hoey had found a well-preserved stupa south of Parasi bazaar (Smith 1901). The site was, however, strangely neglected until the visit of Professor S.B. Deo in 1964 (Rijal 1996). Deo recorded the site's name as Deurawa, and stated that the huge stupa was 'a site worth immediate excavation' (Deo 1968). The monument was later identified as the Ramagrama stupa of the Buddhist texts by Babu Krishna Rijal in 1976 (Rijal 1976: 1996). According to the records of the fifth century AD Chinese Pilgrim Faxian, following the parinirvana of the Buddha Gautama, his remains were cremated and divided into eight parts (Beal 1869). The Koliya king of Ramagrama collected one share and bringing it back to Ramagrama, built a stupa over it. Later when the Emperor Asoka wished to open the stupa in order to redistribute the relics, he was prevented from doing so by a 'naga' and so it became the only unopened stupa of the eight which had originally contain the Buddha's mortal remains. Later, it was recorded that pilgrims visiting the site were so grieved that no-one tended the monument so that a number of them established a temple there. When Fa-hian visited Ramagrama in the fifth century AD, he recorded that the temple was still occupied by monks. Huen Tsang, who later visited the site, recorded that he observed the stupa which survived to a height of some 33m and which was located to the south-east of the deserted city of Ramagrama (Beal 1869). He also recorded the eventful visit of Asoka to the site, stating that there was an inscription on a pillar beside the monument recording this event; he also noted the presence of a sangharama (ibid.).

Once the site had been identified as an archaeological site of great significance, the stupa and land immediately adjacent was acquired and protected by the Department of Archaeology and was later transferred to the Lumbini Development Trust for management. As the exposed brick structures in the south bank of the Jharahih river were threatened by erosion, a plan was implemented to divert the river to the east of the stupa by means of a new channel. This has been done very successfully and the old meander is now slowly drying up. This diversion has safeguarded the exposed structure.
The protected zone immediately adjacent to the stupa is protected by a barbed wire fence and there is a local security officer who is housed close to the site in a purpose-built structure. More recently a large field to the south of the stupa has been presented to the Trust and it is also protected by a barbed wire fence. It is now planted with small trees and bushes and has been provided with a tube well and small concrete prayer platform. The Lumbini Development Trust has also acquired a field close to the terminus of the unmetalled site access road which joins the pukka blacktop to Parasi. The field is wooded on its peripheries and plans have been proposed to build a small single storey temple at the site for pilgrim worship.

2. Methodology

The use of archaeological geophysics, a non-destructive technique, is now an integral part of non-destructive site assessment in the UK, and has been successfully used in South Asia (Coningham & Schmidt 1997; Schmidt & Coningham 2010). It can record shallow sub-surface features quickly and requires only a small team, making it both time and cost-effective. Within the UK, it is generally used in two ways; firstly, to assist with site management and, secondly, to investigate and assess newly discovered sites. The former involves the large scale survey of the monuments in order to define their extent below the surface. Often the distribution of standing monuments may be very different to that of foundations and other remains which are sub-surface. When such a survey is conducted, it is possible to map the position of unexcavated structures in order to gauge the importance of the various areas of the site. This information should be stored, preferably on a GIS system, and when any site development plans are proposed, such as the construction of paths, drains, pipelines or museums, these areas can be avoided. Similarly, if the relationship between sub-surface monuments is questionable, it is possible to locate suitable areas for research-oriented excavations and evaluations. The geophysical element in site assessment is also designed at allowing archaeologists and conservators to identify the best areas to work.

The fieldwork was carried out during two field seasons with focus upon four areas (Sites A-D) in 1997 and a further seven (Sites 1-7) in 1999 (Figure xxx). The grids, rectified aerial photograph and other topographic features were recorded with a Total Station, supplied by The Department of Archaeology. The surveys were undertaken in dry and fairly hot conditions after a prolonged period of rain. The equipment used was a Geoscan Research FM36 fluxgate gradiometer and also a Geoscan Research RM15 earth resistance meter with frame PA5. Geophysics grids were laid out in blocks of 10m x 10m (Sites A, B, D, 1-7) and 20m x 20m (Site C) and the arrangement of these grids is shown in figure x. The survey was undertaken along lines parallel to the grid edges, walking approximately west to east, starting in the northwest corner of each grid. Where the grid size was 10m x 10m, data were recorded every 0.5m along the lines which were 0.5m apart (10m x 10m @ 0.5m x 0.5m). Where the grid size was 20m x 20m, data were recorded every 1m along the lines which were 1m apart (20m x 20m @ 1m x 1m). A twin-probe configuration was used for the earth resistance survey (separation of mobile electrode was 0.5m, of remote electrodes approximately 3m). A current of 1mA and a gain of 1 were used. The fluxgate gradiometer was set to a recording sensitivity of 0.1nT. Earth resistance data were recorded automatically upon insertion of the electrodes in the ground (medium logging speed) and subsequent lines were surveyed in alternate directions (‘zigzag’). Fluxgate magnetometer data were recorded walking with manual trigger, with all lines walked in the same direction (‘parallel’). After completion of each grid the drift of the equipment was logged at a common reference position and the electronic and mechanical setup of the instrument adjusted. The data were downloaded and pre-processed using Geoplot. Grid balancing was achieved using Contors. It appeared unnecessary to apply any filtering to the data. The data were displayed with Contors using 16 grey levels and bicubic interpolation. The data were subsequently imported into ArcView GIS for the display in geographically correct locations and for the drawing of interpretation diagrams. The aerial photograph was rectified to the topographically recorded base map using Airphoto.

3. Results

3.1 Results of the 1997 Mission During the 1997 mission four geophysical surveys were completed, one to the immediate southern of the stupa (Site A),
one to the west of the stupa (Site B), one to the south of the exposed wall in the river bank (Grid C) and one in the wooded field adjacent to the access road (Site D). In addition to the geophysical surveys, an EDM survey was also conducted in order to link the grids into plans of the site. Site A was a rectangle measuring 50m by 10m and was laid between the southern edge of the stupa and the southern fence boundary. The site was subject to both an earth resistance and fluxgate gradiometer survey. In locating the geophysical survey in this area it was hoped that any adjacent structures attached to the stupa itself would be picked up. The area was covered in tall grass which had to be cut prior to the survey, no features were visible on the surface. No obvious features were recorded during the survey.

Site B, measuring 50m x 20m, was located in fields adjacent to the western side of the stupa. An earlier surface survey of this area had failed to identify any trace of structures outside the fence, but an area of brickbat fragments was noted in a number of these fields. The area was further differentiated by being slightly higher than the surrounding area and having crops of lentils and maize, whilst elsewhere paddy was being grown. In particular, the team were attracted to a small uncultivated field, which local inhabitants told us was considered “unlucky” to cultivate. Therefore the archaeological geophysical survey was started in this field by laying out and surveying a 20m square grid in this field. The site was subject to both an earth resistance and fluxgate gradiometer survey. The results of this 20m square block were so rewarding that we surveyed a further two fields to the south of the “unlucky” field. Whilst a full fluxgate gradiometer survey was conducted of the site, an incomplete earth resistance was conducted due to the flooded nature of the fields. The strong magnetic anomalies encountered in this survey clearly indicate the presence of a series of religious monuments in the northern part of the site. The southern part is less clear but the indications lead to the suggestion that the positive anomalies are also caused by the remains of structures. The shape of the anomalies suggests that the features are only buried at a shallow depth. There seems to be no correspondence between the magnetometer results and data from the earth resistance survey. These features appear to represent two or three square enclosures containing an inner enclosure. The most complete example is some 12m square with an inner enclosure of some 5m square which have tentatively been identified as votive Buddhist stupas within individual perimeter walls, perhaps mistakenly identified as diabolical residences by local farmers, thus giving the field its unlucky reputation!

Site C measured 40m by 40m and was located in the wooded field close to the access road. This site was bisected by a large channel and a number of smaller bunds. The site was subject to both an earth resistance and fluxgate gradiometer survey and the linear feature running diagonally across the earth resistance data is caused by an irrigation channel, still visible as a surface feature. This channel also shows as two parallel magnetic anomalies. No apparent evidence for buried structures was noted, indeed, the only other features are two diagonal features visible in the north-west and north-east corner of the earth resistance data, neither of which appear to be substantial. It can thus be stated that the results of the geophysical surveys do not show buried remains. A number of large pits have recently been excavated within the surveyed area, allowing a study of the sub-soil to be made. There were no structures or brickbats visible within the pits’ sections, although some very small fragments of pottery were present.

Site D measured 40m by 20m and was located in fields to the immediate south of the exposed wall in the river bank. The site was located in this position to discover whether there were any further associated structures. The wall was only partially exposed to a height of between 0.20m and 0.30m along a length of some 40m, but appeared to be laid in regular courses. This wall was preserved some 1.5m below the top of the bank and the paddy fields. The site was subject to both an earth resistance and fluxgate gradiometer survey. As the area was under cultivation, no shallow features were expected. This is reflected by the lack of clear anomalies from the resistivity survey. However, the magnetometer results show strong positive anomalies which appear to be related to a rectangular structure of about 10m in length. The outline of the anomalies is rather blurred, which indicates a greater depth of these features. It is possible that the anomaly is caused by buried brick structures related to the exposed wall, however, further investigations are necessary to identify the
nature of this structure in more detail. Local farmers informed us that whilst digging a burial trench in the field immediately to the west of the grid they had discovered a substantial brick platform. Clearly this is another area worthy of survey.

3.2 Results of the 1999 Mission Upon investigation in 1999, the results from Site 1 were seen to be abutting to the south of Site B surveyed in 1997. No further magnetic anomalies were found on this site indicating that the structure on Site 2 does not extend south. Some broad earth resistance anomalies are identified (both low and high) and are in their character similar to those found on Sites A, 5 and 7. It is possible that this is due to underlying soil variations but no specific interpretation can be made. It is also possible that these anomalies are related to the irrigation of paddy field. To the western end of the investigated area is Site 2 which is intersected by a bund of about 0.5m height. The magnetic anomalies show again two ‘concentric’ square positive anomalies (about 2m wide) of about 22.0m and 10.2m side length, respectively. They are most likely caused by underlying brick structures. In addition, the anomalies suggest a cellular internal segmentation, giving further evidence to the interpretation as a Buddhist Vihara. To the north-west, a cell seems to protrude further north. Some magnetic anomalies are extending Eastward in alignment with the main structure. To the north-east a strong positive magnetic anomaly was surrounded by a negative ‘halo’ indicating a very strong magnetic signature. The location of the feature could suggest that it is the base of a round stupa but the strong magnetic response is probably related to firing, as in a kiln or furnace. The earth resistance data do not correlate with these findings.

Site 3 encompasses two paddy fields at the eastern end of the investigated area; close to the modern river course. The earth resistance data clearly show the layout of earlier paddy fields (with a bund offset from the current boundary) but no significant anomalies can be identified. Site 4 to the south-east, close to the intersection between old river bed and the new course, lies on a sandy field used for lentil crops. Some linear magnetic anomalies are found with a trend northwest to southeast but an interpretation of these anomalies is not possible. They could be related to buried brick structures but the anomalies are much weaker than on other sites (2nT compared with 15nT on Site 2). Site 5 covers the garden area south of the inner compound, which is characterised by the dense planting of cherry trees. A number of broad low and high earth resistance anomalies are intersecting the site. They are similar to those found on Sites A, 1 and 7 (see discussion for Site 1). The anomalies seem unaffected by the tree planting. No significant magnetic anomalies were detected. Site 6 lies to the northeast of the investigated area and covers a number of paddy fields around a group of trees. Some broad anomalies are visible in both earth resistance and magnetometer data but no correlation can be identified. The features are unspecific. The final site, Site 7 lies outside the outer compound wall, on the banks of the original riverbed. The high and low earth resistance anomalies are similar to those found on Sites A, 1 and 5 (see discussion for Site 1) and are unspecific. No significant magnetic anomalies were identified.

3. Conclusion

Our two pilot missions to the site had extremely promising results and we can confirm that the site appears to be of highly significant archaeological value, however, our knowledge of the chronology and layout of the complex is still limited. It is possible to propose a Kushan date for the smaller votive Buddhist monuments to the west of the main stupa as they have many similarities to Kushan structures elsewhere. Such a proposal would also closely link the later development of this site with a similar redevelopment at the site of Lumbini itself, suggesting that this region continued to be an important focus and inspiration for Buddhist pilgrimage during Kushan rule. It is strongly recommended that this site is further studied in order to build up a fuller chronological and spatial understanding of the monuments and their relationship to each other. Bearing in mind the pristine nature of the complex, we would further recommend that non-destructive techniques are used in order to preserve the striking visual appearance of the site. Further geophysical and topographical surveys of the fields immediately adjacent to the stupa and the exposed wall are recommended in order to obtain this information.
4. Acknowledgements

In addition to the generous help given by officers of the Department of Archaeology and the Lumbini Development Trust during our missions, we would also like to acknowledge the assistance of the following individuals: Mr Shrikrishna Gautam and Mr Khadga Man Shrestha; Dr Arnaty, Mrs Riddhi Pradhan, Mrs Rana, Mr Kosh Prasad Acharya, Mr C.P. Tripathi and Mr Sukra Sagar Shrestha; Mr Gajendra Kumar Lama, Ang Dawa Sherpa, Mr Laxmi D. Manandhar, Mr Ram Lal Shrestha, Mr Basanta Bidari and Mr Pratap Khatri; Mr Purushottam N. Pradhan; Ms Minja Yang, Mr David Michelmore, Ms Junko Taniguchi Yoshinobu Kitamura, Himalchuli Gurung; Dr Carl Heron, Dr. Mark Manuel, Professor Mark Pollard, Mr Steve Cheshire and Mr Damian Robinson. Finally, we must acknowledge the financial support of UNESCO, without which these missions would not have been possible.

5. References

Beal, S., 1869. Travels of Fa-hian and Sung-Yun: Buddhist pilgrims from China to India (400 AD and 518 AD). London; Trubner & Co.

Figure 1:

Ramagrama Stupa Complex
Sites and Geophysics Grids

Figure 2:

Ramagrama Stupa Complex
Geophysical Data

Legend:
- Mag High
- Mag Medium
- Mag Negative
- Red High
- Red Low
- Green Low
Figure 5:

Ramagrama Stupa Complex
Site D Geophysical Data

Figure 6:

Ramagrama Stupa Complex
Site 2 Geophysical Data
Figure 11: Ramagrama Stupa Complex
Site 6 Geophysical Data

Figure 12: Ramagrama Stupa Complex
Site 7 Geophysical Data
Ramagama, Nepal

Site 97-A, Just S of Stupa, inside inner compound

October 1997
Earth resistance survey: 20..33Ω (white to black, linear)
Fluxgate gradiometer survey: -11..5nT (white to black, linear)
50m x 10m @ 0.5m x 0.5m

Figure 15:

Ramagama, Nepal

Site 97-B, Unlucky and Lentil Field

October 1997
Earth resistance survey: 12..23Ω (white to black, linear)
Fluxgate gradiometer survey: -20..18nT (white to black, linear)
Fluxgate gradiometer survey (HP Filtered): -9..5nT (white to black, linear)
20m x 46m @ 0.5m x 0.5m

Figure 16:
Ramagrama, Nepal

Site 97-C, Garden to SW, to be developed into temple area

October 1997
Earth resistance survey: 11 - 23Ω (white to black, linear)
Fluxgate gradiometer survey: -4 - 6mT (white to black, linear)
40m × 40m @ 1m × 1m

Figure 17:

Ramagrama, Nepal

Site 97-D, Area S of Exposed Wall

October 1997
Earth resistance survey: 12 - 17Ω (white to black, linear)
Fluxgate gradiometer survey: -11 - 6mT (white to black, linear)
40m × 16m @ 0.5m × 0.5m

Figure 18:
Ramagrama, Nepal

Site 99-1, South of "Lentil Field"

September 1999
Earth resistance survey: 17.91 .. 36.38Ω (white to black, linear)
Fluxgate gradiometer survey: -6.63 .. 4.703nT (white to black, linear)
30m × 30m @ 0.5m × 0.5m

Figure 19:

Ramagrama, Nepal

Site 1999-2, W, near old river

22 Sept 99, AS and RV
Earth resistance survey: 10.53 .. 16.79Ω (white to black, linear)
Fluxgate gradiometer survey: -6.8 .. 19.80nT (white to black, linear)
34.5m × 50m @ 0.5m × 0.5m

Figure 20:
Site 99-3, Paddy Fields, E
September 1999
Earth resistance survey: 8.9 - 11.1 Ω (white to black, linear)
Fluxgate gradiometer survey: -3.49 - 3.566mT (white to black, linear)
40m x 18m @ 0.5m x 0.5m

Figure 21:

Site 99-4, Bare Lendil Field, SE
September 1999
Earth resistance survey: 10.3 - 14.4Ω (white to black, linear)
Fluxgate gradiometer survey: -2.1 - 2.304mT (white to black, linear)
20m x 30m @ 0.5m x 0.5m

Figure 22:
Figure 23:

Ramagrama, Nepal

Site 99-5, Garden with Cherry Trees, S of Stupa

September 1999
Earth resistance survey: 11.1 – 24.4Ω (white to black, linear)
Fluxgate gradiometer survey: -3.46 – 2.43HzT (white to black, linear)
40m x 20m @ 0.5m x 0.5m

Figure 24:

Ramagrama, Nepal

Site 99-6, Paddy Fields, near tree group, NE

September 1999
Earth resistance survey: 11.1 – 12.8Ω (white to black, linear)
Fluxgate gradiometer survey: -1.4 – 1.89HzT (white to black, linear)
20m x 30m @ 0.5m x 0.5m

Figure 25:

Ramagrama, Nepal

Site 99-7, S of Stupa Garden, outside fenced compound

September 1999
Earth resistance survey: 18 – 71Ω (white to black, linear)
Fluxgate gradiometer survey: -2.2 – 2.49HzT (white to black, linear)
40m x 10m @ 0.5m x 0.5m
नेपाल स्थित भूटानी गुम्बा, मार्मो-ला-खाङ संरक्षण र संचालन: एक ऐतिहासिक विवाद

सुरीला मानन्त्र (फिकर)

सान नेपाल जनेत

नेपाल र तथ्यको धोखंगरी फैसला गर्न मानन्त्र गरी बाबुल गर्नको हो। तर, पिलिनाको धार्मिकताको पुरातात्विक धम्म दृष्टि समाअन्तर् भएको प्रमुख धोखंगरी फैसलाको गरी नै धार्मिकताको धम्म हो? कारण, यसैले पर्याप्त धार्मिक धम्मको धम्मको प्रमुख धोखंगरी फैसलाको गरी नै धार्मिकताको धम्म हो?

पृष्ठभर:

इसीलाई भूटानी गुम्बा, मार्मो-ला-খाङ स्थित स्थानको संरक्षण र संचालनको धम्मको प्रमुख धोखंगरी फैसलाको गरी नै धार्मिकताको धम्म हो?

पृष्ठभर:

1. यस लेखमा प्रमुख धार्मिक प्रमुख प्रमुখ

2. यस लेखमा प्रमुख प्रमुक
भूमि भलणेकों देखिन्छ (Vajracharya and Malla, 1985: 97)। भन्नी रत्निकीसिद्ध महत्त्वका राजा राज्य प्रति प्रदानमा निर्माण गरेको पाइँदै (Tuker, 1975: 29)। यसको उपाय सबै भूमिका सम्बन्धमा सम्बन्ध यहू रहेको पाइँदै। त्यस भन्नी भूमि राजालाई वाद र अधिकता विविध एव विविधको आफू रस्तेखोपाय भनिने खान दिगि एक अधिकता नेपालीले भनिने खान र काल प्रशिक्षण गर्नु सक्ने भएकै थियो। उनले तनले गाउँका भैली सम्बन्ध जोडेर जोडनेसो सम्बन्ध तुजापाण दिन (आयर्य, 2024: 9/ जनवरी, २०१३ साल: VS Harat, 1980: 47/ Singh, 1972: 21/ White, १०२३: 1023)।

भूमि भलायि त्यसको दुवै भविष्य भागमा निर्माण गराइनुभाव राजसम्म । भूमिका भन्नी लाई विविध विविधता राजसम्म निर्माण गर्नु परेको दिन। सबै र अतिरिक्त भयो। भन्नी जो भूमि भलायि त्यसको प्राचीनता भागमा घसिलो र घसिलो गर्नु भएको भएको उत्तर-पूर्वी भेटिकोर अन्तर्भाषी भन्नी जो भविष्य रूपमा ठुलो भग्ना भएको भएको उत्तर-पूर्वी भेटिकोर। यसलाई भनिने भूमि भलायि त्यसको प्राचीन भागमा लाई विविध विविधता राजसम्म निर्माण गर्नु परेको दिन। सबै उत्तरहाँ अन्तर्भाषीको भविष्य भागमा निर्माण गर्नु परेको दिन। भविष्य भागमा निर्माण गर्नु परेको दिन।
मायामी – ला-खाई (Maro-mo-lha-khang)

यो गुमा दुई तलाको छ । यसको प्रथम र दूसरो तलाहर भूमाको बौद्धिको धरापत्रको रूपमा प्रयोग गरेको पाइसी । पहिलो तलाहर अभिविभक्ताधकर मध्ये दुई अभिविभक्ताधकर सुनको पाइसी छ । यो गुमा भिव बिपिनमसमु देखि देखि...
ঋষী হলেন যারা পৃথিবীতে নিয়ন্ত্রণ করতে পারেন, যা পুনর্গঠন করতে পারে এবং বেদ্যগত ধারণা হিসেবে প্রচলিত। তারা পৃথিবীর বিভিন্ন ক্ষেত্রে দেখা যায়।

রঘুনাথ জগন্নাথ ব্যাসের গ্রন্থের মাধ্যমে পরিচয় পাওয়া যায়। তার বাবু রঘুনাথের মৃত্যুর পরে তিনি তার সন্ত্রাসে নিঃসরণ করেন।

রঘুনাথজগন্নাথ জন্মের পরেও তিনি তার বাবুর পরিপক্঵ জীবনের সাথে যুক্ত থিয়েছিলেন। তার বাবুর মৃত্যুর পরে তিনি তার সন্ত্রাসে নিঃসরণ করেন।

দুঃখিত হয়ে মনে ভবিষ্যৎ শিক্ষকের চেষ্টা সমর্পিত করতে সাহায্য করেন। বিশেষ করে তাদের সাফল্য ও উন্নতির জন্যে তাদের সকল সাহায্য প্রস্তুতি করেন।

দুঃখিত হয়ে মনে ভবিষ্যৎ শিক্ষকের চেষ্টা সমর্পিত করতে সাহায্য করেন। বিশেষ করে তাদের সাফল্য ও উন্নতির জন্যে তাদের সকল সাহায্য প্রস্তুতি করেন।

দুঃখিত হয়ে মনে ভবিষ্যৎ শিক্ষকের চেষ্টা সমর্পিত করতে সাহায্য করেন। বিশেষ করে তাদের সাফল্য ও উন্নতির জন্যে তাদের সকল সাহায্য প্রস্তুতি করেন।

দুঃখিত হয়ে মনে ভবিষ্যৎ শিক্ষকের চেষ্টা সমর্পিত করতে সাহায্য করেন। বিশেষ করে তাদের সাফল্য ও উন্নতির জন্যে তাদের সকল সাহায্য প্রস্তুতি করেন।
परिच्छेद 6

परिच्छेद 7

परिच्छेद 8

(भाग : जैनीकेतेह, स्वतंत्र बंक नं १५१)

(भाग : शारीरिक बंद मिळावा नं १४ व नं १४३)

(भाग : जैनीकेतेह, स्वतंत्र बंक नं १५१)

(भाग : जैनीकेतेह, स्वतंत्र बंक नं १५१)

(भाग : शारीरिक बंद मिळावा नं १४ व नं १४३)
পুরাতত্ত্ব বিভাগকে গতিতেল্প
আ.ব. ০৬৬/৬৭

স্বামীমুখের রাজকারণী
সর্বিপাপ নীতিপাপে

বিষয় প্রবেশ :-
প্রাচীন স্মারক সংরক্ষণ এনে (সংশোধন সরিতা)
২০১৩ কে মাইথ হয়ে প্রথম অধিদায়কেরী চূড়া ও রতাক
মূল সম্পদের নামাং হলী, শহর, শিলার, চীনা, জীর্ণ, ইতিহাস,
সিলার, চীনা, ধর্মায়ন, কোট, দিগ্বিজয় এবং অপরূপ সম্পদের
প্রস্তুতার নাম তথা তা জনহরিকে ধর্ম এবং অনুসারণ জারি
লিখিত মহাত্মা শিলায় পূর্বত্ত প্রতিবেশের সাথে সম্বন্ধ
গর্ভে সমন্বিত যে বিলাসের প্রাথমিকতা দিতে প্রাপ্ত হয় সরল।

পূর্বত্ত বিভাগের তথ্য আ.ব. ২০১৬ মাসের আগামিতে উপস্থাপন
লক্ষণ প্রতিকার নামকরণের কার্যকর্মের প্রথমে হারিয়ে যায় সরল।
বাংলাভিত্তিক প্রকৃতি -
ধর্মায়ন সম্পদের বুদ্ধি সংরক্ষণ এবং জীবনের
কার্যকর নামকরণ যে বিশালসার প্রদান দিতে বাংলাভিত্তিক প্রকৃতি
জন্মের প্রথমে প্রতিকার নামকরণের বহু পূর্বে উপস্থাপন
যে অন্তর্নিহিত চিত্তের প্রতিকার নামকরণ দিতে পারে না।

<table>
<thead>
<tr>
<th>বাংলা</th>
<th>অনুবাদ</th>
<th>বিভাগ</th>
<th>বিভাগের সম্পদ</th>
<th>পুরাতত্ত্ব</th>
<th>বিভাগের নিম্নলিখিত</th>
<th>সম্পদের সম্পদ</th>
<th>অনুবাদ</th>
</tr>
</thead>
<tbody>
<tr>
<td>বাংলা</td>
<td>অনুবাদ</td>
<td>বিভাগ</td>
<td>বিভাগের সম্পদ</td>
<td>পুরাতত্ত্ব</td>
<td>বিভাগের নিম্নলিখিত</td>
<td>সম্পদের সম্পদ</td>
<td>অনুবাদ</td>
</tr>
<tr>
<td>২০১৩০৬৬</td>
<td>২০১৩০৬৭</td>
<td>২০১৩০৬৮</td>
<td>২০১৩০৬৯</td>
<td>২০১৩০৭</td>
<td>২০১৩০৭১</td>
<td>২০১৩০৭২</td>
<td>২০১৩০৭৩</td>
</tr>
</tbody>
</table>

এই বিভাগের চৌক অঞ্চলের বিভাগের শিল্প ও
পুরাতত্ত্বিক এবং ঐতিহাসিক সম্পদ সম্পর্কে ধর্ম এবং
অনুসারণ এবং স্মারক ও ধর্মায়ন সম্পর্কে নিম্নলিখিত
সম্পদকে হারিয়ে যায়। এই বিভাগের চৌক অঞ্চলের
এক মহাযোগের সূচনায় সম্পর্কে নিম্নলিখিত
প্রযোজনার সম্পর্কে হারিয়ে যায়।

বিভাগটি সম্পর্কে বিভাগের নিম্নলিখিত
প্রযুক্তি কর্তৃক যে বিভাগের চৌক অঞ্চলের
বিভাগের সম্পর্কে নিম্নলিখিত
প্রযোজনার সম্পর্কে হারিয়ে যায়।
<table>
<thead>
<tr>
<th>নং</th>
<th>কার্যক্রম</th>
<th>অর্থধরন এবং তথ্যপ্রদান</th>
<th>উন্নয়ন এবং প্রতিষ্ঠান</th>
<th>কর্মকামনার অন্তর্ভুক্তি</th>
<th>পর্যালোচনা</th>
</tr>
</thead>
<tbody>
<tr>
<td>১.</td>
<td>নিয়ন্ত্রণ সুবিধার্থি কার্যক্রম প্রশাসনিক উপস্থাপন খর্চ</td>
<td>১১০</td>
<td>নিজস্ব</td>
<td>১১০</td>
<td>নিজস্ব</td>
</tr>
<tr>
<td>২.</td>
<td>নির্ভরশীল সুবিধার্থি কার্যক্রম প্রশাসনিক উপস্থাপন খর্চ</td>
<td>৪০</td>
<td>নেত্রিভ নিজস্ব</td>
<td>৪০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>৩.</td>
<td>উৎসর্গীকরণ মাধ্যমে অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>৪.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>৫.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>৬.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>৭.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>৮.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>৯.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>১০.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>১১.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>১২.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>১৩.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>১৪.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>১৫.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>১৬.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>১৭.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>১৮.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>১৯.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
<tr>
<td>২০.</td>
<td>অর্থনৈতিক উপস্থাপন খর্চ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
<td>১০০</td>
<td>নেত্রিভ</td>
</tr>
</tbody>
</table>

৫৫
<table>
<thead>
<tr>
<th>No.</th>
<th>रा संघालयको कामारा खिरिद ५५२६</th>
<th>१००</th>
</tr>
</thead>
<tbody>
<tr>
<td>२६</td>
<td>मण्डलयाँ रोजका मुमिल्लो इन्द्री कानाउने</td>
<td>१५०</td>
</tr>
<tr>
<td>२७</td>
<td>वाक्तिनी प्रमाणी रोजका प्रत्यक्ष सुरु धाराहुको अगाडि बुझा छान्ने</td>
<td>१००</td>
</tr>
<tr>
<td>२८</td>
<td>जनजाति कमाबा २ मा. उपाधि मा.मा. माधव गर्म</td>
<td>३००</td>
</tr>
<tr>
<td>२९</td>
<td>रा संघालयको जानकारक स्वास्थ्य व स्वास्थ्य सुधार गर्न</td>
<td>२५०</td>
</tr>
<tr>
<td>३०</td>
<td>Fire Extinguisher Refill गर्न</td>
<td>१००</td>
</tr>
<tr>
<td>३१</td>
<td>रा मुँह संघालयको सानी प्राप्ती मुँह भरीद ५५२६</td>
<td>५०</td>
</tr>
<tr>
<td>३२</td>
<td>२०० धान मुँहहुको परिपालनका पूरा पैदाय समाधान गर्न</td>
<td>१५०</td>
</tr>
<tr>
<td>३३</td>
<td>रा मुँह संघालयको सुरु मुख्यको भोजन तथा र क्याश सुधार गर्न</td>
<td>१५०</td>
</tr>
<tr>
<td>३४</td>
<td>बै. सा. सा. स. स. प्रायोगिका अन्तर्गत सम्पर्क धाराहुको रचाय सङ्कर्षण गर्न</td>
<td>३००</td>
</tr>
<tr>
<td>३५</td>
<td>रा सा. सा. सा. सा. प्राकृतिक संग्रहालयमा रोजका सामग्रिहुको रचाय सङ्कर्षण र सङ्कर्षण गर्न</td>
<td>२५०</td>
</tr>
<tr>
<td>३६</td>
<td>रा कला संघालयको भूमिका दरबारमा संग्रहालय स्वास्थ्य सम्लन्त आशृङ्गक स्वास्थ्य सुधार गर्न</td>
<td>१५०</td>
</tr>
<tr>
<td>३७</td>
<td>रा कला संघालयको खोज कोटा ममता तथा सुधार कार्य गर्न</td>
<td>१५०</td>
</tr>
<tr>
<td>३८</td>
<td>हस्तितलित ग्रंथ एवं अवसाजन सङ्कर्षण</td>
<td>१००</td>
</tr>
<tr>
<td>३९</td>
<td>आचरणहुको डिजिटाइजेशन गर्न बढी क्षमता भएको क्षमता, स्वास्थ्यकम्युटर सम्बन्धित सङ्कर्षण उद्योग ख्रीलित</td>
<td>२५०</td>
</tr>
<tr>
<td>४०</td>
<td>रा बोक्सेनवालाको गुरुशा प्रमाण माध्यम फलसामको वार समाहन कार्य पूरा गर्न</td>
<td>१००</td>
</tr>
<tr>
<td>४१</td>
<td>अभिनेताहुको सौंभाल सुधार</td>
<td>२००</td>
</tr>
<tr>
<td>४२</td>
<td>पुस्तकालय मुद्दीकरण कम्युटर गिलित</td>
<td>५०</td>
</tr>
<tr>
<td>४३</td>
<td>साराजोक्सवर प्रशासनिक मिनिवर स्मिर्न ध्रुम धराय सङ्कर्षण वितरण</td>
<td>२००</td>
</tr>
<tr>
<td>४४</td>
<td>पुस्तकालय मिनिवर सक्रिय, विपरीतिया सामग्री</td>
<td>१००</td>
</tr>
<tr>
<td>४५</td>
<td>वडा जातीयो यमा सङ्कर्षण कार्य, धनात</td>
<td>२००</td>
</tr>
<tr>
<td>४६</td>
<td>ट्यूटर प्राििको भास्मैरण तथा ज्ञानवर मिनिवर सङ्कर्षण, मोलिफ़ुर</td>
<td>२५०</td>
</tr>
<tr>
<td>४७</td>
<td>महासागरहुका समाधान ख्रीलित</td>
<td>५०</td>
</tr>
<tr>
<td>४८</td>
<td>प्रथममुख महाविश्व सङ्कर्षण कार्य पूरा गर्न नुवाघोवी लिखित पुर</td>
<td>४५०</td>
</tr>
<tr>
<td>४९</td>
<td>पन्नेदेव सङ्कर्षण, गोदावरी लिखित पुर</td>
<td>६००</td>
</tr>
<tr>
<td>५०</td>
<td>लिखित वितरन पार्टी सङ्कर्षण</td>
<td>६००</td>
</tr>
<tr>
<td>५१</td>
<td>भनेवारी चोहो जीवपीढ़ा, काठमाडौं</td>
<td>४५०</td>
</tr>
<tr>
<td>५२</td>
<td>न्यायसेवा न.पा.स्मिर्न वैश्विक सङ्कर्षण, रोक्स्का</td>
<td>१००</td>
</tr>
<tr>
<td>५३</td>
<td>राजी भवन मिनिवर सारण सारण, उत्तरवर्तिनी</td>
<td>१००</td>
</tr>
<tr>
<td>५४</td>
<td>साराजोक्सी मिनिवर सङ्कर्षण कार्य</td>
<td>२००</td>
</tr>
<tr>
<td>५५</td>
<td>स्मिर्न गर्न सङ्कर्षण कार्य ग्यूर पर्न</td>
<td>१००</td>
</tr>
<tr>
<td>५६</td>
<td>विश्विक गर्न सङ्कर्षण कार्य</td>
<td>१००</td>
</tr>
<tr>
<td>५७</td>
<td>दूलो दोहरी मिनिवर जीवपीढ़ा, भावना, रोक्स्का</td>
<td>५०</td>
</tr>
<tr>
<td>५८</td>
<td>न्यायसेवा मिनिवर सङ्कर्षण सारण, रोक्स्का</td>
<td>१००</td>
</tr>
<tr>
<td>५९</td>
<td>बाजूस्थु सङ्कर्षण निर्माण, निर्माणवित्त</td>
<td>२००</td>
</tr>
<tr>
<td>६०</td>
<td>सरकारी पाठीको सङ्कर्षण कार्य पूरा गर्न</td>
<td>४५०</td>
</tr>
<tr>
<td>६१</td>
<td>महागाउँ मिनिवर सङ्कर्षण, मुपाप, बाडिङ्ग</td>
<td>१५०</td>
</tr>
<tr>
<td>১১.</td>
<td>দুটি কুলিন মন্ত্রিপ্রস্তাবনা সম্পন্ন হয়েছে। তৃতীয় মেলায়।</td>
<td>৫০০</td>
</tr>
<tr>
<td>১২.</td>
<td>মিত্রসেন মন্ত্রিপ্রস্তাবনা সম্পন্ন হয়েছে।</td>
<td>১৫০</td>
</tr>
<tr>
<td>১৩.</td>
<td>প্রশাসন মন্ত্রিপ্রস্তাবনা সম্পন্ন হয়েছে।</td>
<td>১৫০</td>
</tr>
<tr>
<td>১৪.</td>
<td>পরিবহন মন্ত্রিপ্রস্তাবনা সম্পন্ন হয়েছে।</td>
<td>১৫০</td>
</tr>
<tr>
<td>১৫.</td>
<td>বিশেষ মন্ত্রিপ্রস্তাবনা সম্পন্ন হয়েছে।</td>
<td>৫০</td>
</tr>
<tr>
<td>১৬.</td>
<td>অধিকৃষ্ট দায়িত্ব মন্ত্রিপ্রস্তাবনা সম্পন্ন হয়েছে।</td>
<td>৫০</td>
</tr>
<tr>
<td>১৭.</td>
<td>সরকারী মন্ত্রিপ্রস্তাবনা সম্পন্ন হয়েছে।</td>
<td>৫০</td>
</tr>
<tr>
<td>১৮.</td>
<td>মাফি মন্ত্রিপ্রস্তাবনা সম্পন্ন হয়েছে।</td>
<td>৫০</td>
</tr>
<tr>
<td>১৯.</td>
<td>প্রশাসন মন্ত্রিপ্রস্তাবনা সম্পন্ন হয়েছে।</td>
<td>৫০</td>
</tr>
<tr>
<td>২০.</td>
<td>মাফি মন্ত্রিপ্রস্তাবনা সম্পন্ন হয়েছে।</td>
<td>৫০</td>
</tr>
<tr>
<td>২১.</td>
<td>সরকারী মন্ত্রিপ্রস্তাবনা সম্পন্ন হয়েছে।</td>
<td>৫০</td>
</tr>
<tr>
<td>২২.</td>
<td>প্রশাসন মন্ত্রিপ্রস্তাবনা সম্পন্ন হয়েছে।</td>
<td>৫০</td>
</tr>
<tr>
<td>২৩.</td>
<td>মাফি মন্ত্রিপ্রস্তাবনা সম্পন্ন হয়েছে।</td>
<td>৫০</td>
</tr>
<tr>
<td>২৪.</td>
<td>সরকারী মন্ত্রিপ্রস্তাবনা সম্পন্ন হয়েছে।</td>
<td>৫০</td>
</tr>
<tr>
<td>২৫.</td>
<td>প্রশাসন মন্ত্রিপ্রস্তাবনা সম্পন্ন হয়েছে।</td>
<td>৫০</td>
</tr>
<tr>
<td>২৬.</td>
<td>মাফি মন্ত্রিপ্রস্তাবনা সম্পন্ন হয়েছে।</td>
<td>৫০</td>
</tr>
</tbody>
</table>
বিশ্ব সম্পর্ক কর্মকান্ড অভিজ্ঞতা আ.ব. ২০৬৬/৬৭

বিশ্ব সম্পর্ক কর্মকান্ড অভিজ্ঞতাকে অংশগ্রহণের জন্য স্বাক্ষরিত করার প্রস্তাব নেওয়া হলে আলোচনা করা হয়। এটি সরকার এবং সমাজের জন্য সমস্যা সমাধান করার জন্য প্রয়োজনীয় হলে এটি সমাধান করা হয়। এটি সমস্যা সমাধান করার জন্য প্রয়োজনীয় হলে এটি সমাধান করা হয়। এটি সমস্যা সমাধান করার জন্য প্রয়োজনীয় হলে এটি সমাধান করা হয়।

<table>
<thead>
<tr>
<th>ক্ষমতার জমাদার</th>
<th>বিশ্ব সম্পর্ক কর্মকান্ড</th>
<th>বলিকা নির্দেশ 2.হাজারাদে</th>
<th>কৃষির বৈশিষ্ট্য</th>
</tr>
</thead>
<tbody>
<tr>
<td>১. সমাজসেবন স্থায়ীকরণ বিশ্ব সম্পর্ক কর্মকান্ড</td>
<td>২২৩</td>
<td>১০০০</td>
<td></td>
</tr>
<tr>
<td>২. ঘাঁটি ক্রয় দামর সংক্রমণ</td>
<td>৩০০</td>
<td></td>
<td></td>
</tr>
<tr>
<td>৩. ঘাঁটি নির্মাণ কক্ষবিহার</td>
<td>৪০০</td>
<td></td>
<td></td>
</tr>
<tr>
<td>৪. ঘাঁটি নির্মাণ জীবনাবলী</td>
<td>১১০০</td>
<td></td>
<td></td>
</tr>
<tr>
<td>संख्या</td>
<td>विवरण</td>
<td>संख्या</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>हनुमानदेवी का दरवार संपरिशदकों कोटा काउंटर प्राप्ति निर्णय गई</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>हनुमानदेवी का दरवार रहों दिन सहस्त्रांग प्रदर्शन व्यक्ति निर्णय गई</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>हनुमानदेवी का दरवार रहों व्यापारिक कूल मददको छुआ विज्ञापन</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>संगमरमरीत बोत पारी जीवित गर्ने</td>
<td>38000</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>संगमरमरीत बोत मददके संरक्षण</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>क्रमशः वाहिकालिकरण आगामीको विवाद मददके संरक्षण</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>स्मृती नागरायण मददके आगामीको नागरायण मददके संरक्षण</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>कूल मददके संरक्षण</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>पूर्वी मिलन मददके पारिशक्ती पारी संरक्षण, बारे</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>पूर्वी बैंडेवर मददके बाजी पारी बोलाको संरक्षण गई</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>पूर्वी कीटित विविध मददके, पार्टी, समूह, तथा कालान्तर सामग्रीको संरक्षण गई</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>स्मृती दस्तेरा रामाइको Plague व्यवस्थित गर्ने</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>वधुशंक मददके परिशिष्टक नैरी की प्रवृत्ति संरक्षण कार्य</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>अवाजपता नल मददके संरक्षण</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>विवरण मददके सरकार प्रदर्शन तथा छापन कार्यक्रम संचालन गये नीति के प्रति क्षेत्र 5:30 हार्दिक पोषणीय र 30 हार्दिक प्रदर्शन आयोजनको गये</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>विवरण मददके संस्थागत आयोजन गये गर्ने तत्सम संचालन गई</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>विवरण मददके संरक्षण एवं व्यवस्थित कार्य सामग्री प्राप्ति आयोजनको तथा गर्ने UNESCO उपस्थित विविध विकास प्रदर्शन गर्ने</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>UNESCO मददके संरक्षण एवं व्यवस्थित कार्य सामग्री प्राप्ति आयोजनको तथा गर्ने</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>स्मृती क्षेत्रको निति का अभिवृद्धिका निर्माण तथा स्मृतिका विविधका निम्नांदी क्रमान्तको अभिवृद्धि निर्माण गर्ने</td>
<td>20000</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>स्मृती क्षेत्रको निति का अभिवृद्धिका निर्माण तथा स्मृतिका विविधका निम्नांदी क्रमान्तको अभिवृद्धि निर्माण गर्ने</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>स्मृती क्षेत्रको अभिवृद्धि क्रमान्तको अभिवृद्धि तथा स्मृतिका अविविधका निम्नांदी क्रमान्तको अभिवृद्धि निर्माण गर्ने</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>साउंडट्रैक स्मृती क्षेत्रको BufferZone रामाइका Street Elevation तथा पार्थ गर्ने ।</td>
<td>17500</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>कालपाठारी उपस्थित मददके प्रवृत्ति संपरिशदको अनुभवका निर्माण तथा स्मृतिका विविधका, पर, नवन क्रियार को अभिवृद्धि पूर्व सामान्य तथा गर्ने Data Base मददके पार्थ गर्ने</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>प्रतिभागी वाणिज्यीयविविधकार्यक्रम Drawing Documentation को कार्य गराउँने</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>प्रतिवेदनको सममित व्यवस्थित प्रयोगको सामान्यता अवधारणा गर्ने निम्नांदी तथा पार्थ गर्ने</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>स्मृति क्षेत्रको अभिवृद्धिका निम्नांदी क्रमान्तको Modification विविधका Pilot Project को समय तथा प्राप्त गर्ने</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>स्मृति क्षेत्रको अभिवृद्धिका निम्नांदी क्रमान्तको अभिवृद्धि पूर्व सामान्य तथा पार्थ गर्ने बन्भूषण</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>स्मृति क्षेत्रको अभिवृद्धिका निम्नांदी क्रमान्तको अभिवृद्धि पूर्व सामान्य तथा पार्थ गर्ने बन्भूषण</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>प्रतिवेदनको अनुभवका कालपाठारी संचालन</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>स्मृति क्षेत्रको अभिवृद्धि पूर्व सामान्य तथा पार्थ गर्ने बन्भूषण</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>दस्तेरा दशू पूजीकरण</td>
<td>96144</td>
<td></td>
</tr>
</tbody>
</table>
आर्थ. २०६६.०६.०७ आपतकालिन संरक्षण तर्कका कार्यहरू

1. मन्त्रालयको मन्दिर संरक्षण कार्य र. २५,०००
2. पवित्री, उदेश्यको परिसर तुलनात्मक मन्दिर र मूल्य बहितको विवेचनाभाषा संरक्षण कार्य र. २५१५.३०
3. पाठी संरक्षण जोखिम विद्युत र सर्विटेक्स चार्जिंग संरक्षण कार्य र. २५५७.१५
4. वाहनियो (चौको) संरक्षण कार्य, दुकानी तथा बापोदा, (पाठी छाना) गरी तर्कका कार्य न.प. उ.म.न.पा २१ र. १०२००.००
5. तालाब जलशरणी संरक्षण कार्य ल.पु. उ.म.न.पा. र. २५५४.००

आर्थ. २०६६.०६.०७ मा प्राविधिक सहयोग गराउनका तथा सहयोग गरिएका कार्यहरू

1. नयाँहर भवन संरक्षण कार्यको लागि प्राविधिक सहयोग उपलब्ध गराउनको
2. दोलखा चौको संरक्षण विकासका न.पा २ चौको संरक्षण सहयोग गराउनको
3. खोजका स्थापना मन्दिर मूल्य संरक्षण प्राविधिक सहयोग उपलब्ध गराउनको
4. नगरपालिका मन्दिर भित्री तथा दूरस्थ मन्दिर संरक्षण प्राविधिक सहयोग गरिएको
5. नदीकुट्टक विस्तारी जीमलाई सहयोग गरिएको।
6. दोलखाको मन्दिर परिसर नयाँहर संरक्षण सहयोग गरिएको।
7. वेल्लकुट्टक मन्दिर परिसर संरक्षण सहयोग गरिएको।
8. बचावको पाठी संरक्षण प्राविधिक सहयोग उपलब्ध गराउनको।
9. श्री साधूकुण मन्दिर भवनका लागि सहयोग गरिएको।
10. न.प. उ.म.न.पा ३ पुनरुत्थान श्रंखला स्थानीय संरक्षण सहयोग गरिएको।
11. टिकौकल महादेव मन्दिर छाने निर्माणको विस्तार सहयोग गरिएको।
12. न.प. उ.म.न.पा ७ स्थानीय स्थानको दंकित परिसर स्थान पर्याय संरक्षण सहयोग गरिएको।
13. चन्द्रमा प्राविधिक मन्दिरमा पिताल छाना र फेन प्राविधिक सहयोग उपलब्ध गराउन।
ABOUT THE AUTHORS

Department of Archaeology,
Durham University, Durham,
DH1 3LE, UK

Department of Archaeology,
Durham University, Durham,
DH1 3LE, UK

Sushila Manandhar (Fischer) – Research Scholar
CNAC, Kirtipur

Shyam Sundar Rajbamshi – Epigraphy Officer
DoA

Sabita Neupane – Epigraphy Officer
DoA